본문 바로가기

Research114

Unbiased Estimation, Biased Estimation # 불편 추정치(unbiased estimation) : 모집단(population)의 통계값을 정확하게 측정할 수 있는 방법. - 설문조사를 통해 모집단 평균 구하기 : n개의 샘플 그룹을 만들고 각 샘플 그룹에서의 평균의 평균을 내면 모집단의 평균을 정확하게 예측 가능함이 증명되었다. 그러므로 이는 unbiased estimation에 속한다. # 편의 추정치(biased estimation) : 모집단(population)의 통계값을 정확하게 측정할 수 없는 방법. - 설문조사를 통해 모집단 분산 구하기 : 모집단의 분산은 표본들의 분산과 항상 같지 않으므로(n-1배만큼 작음)이는 biased estimation이다.-> n개의 샘플 그룹을 만들고 각 샘플 그룹에서 분산을 내서 모으면 모집단의 분산.. 2015. 3. 23.
Kalman Filter HMM는 모든 변수가 discreteKalman filter는 모든 변수와 히든도 가우시안임. 똑같이 히든스테이트가 있고, 히든 스테이트 간의 transition이 있음 2015. 3. 11.
Bayesian Network 베이지안 네트워크 (Bayesian Network)베이지안 네트워크는 Naive Bayes 모델의 빈약한 인과관계 구조(1 depth)를 훨씬 복잡하게 표현할 수 있는 조건부 확률 기반의 Probabilistic Graphical Model(PGM) 이다. 베이지안 네트워크의 핵심은 다음과 같다. 1. 조건부 확률을 사용한 인과관계 모델링2. 인과관계 모델(=structure)은 사람이 만든다.3. 그 모델의 조건부 확률 값을 데이터로부터 학습한다. 예를 들어 어떠한 일련의 사건과 관련이 있다고 생각되는 Binary(True/False) variable이 5가지라고 생각해보자. 그런데 이 변수들이 서로 복잡한 구조의 인과성을 가질 수 있다. 아주 유명한 아래의 그림을 예시로 들 수 있다. 만약 단순히 5.. 2015. 3. 10.
뇌과학 - Place cell 다음과 같은 격자 형식의 뇌 세포들이, 위치 구조를 코딩하고 있다. 2015. 3. 3.
Ada boost 0.51의 정확도 (0.50 가 랜덤)를 가진 weak classifier를 여러개 합쳐 정확도 1 에 가까운 strong classifier 를 만들 수 있다. 각 weak classifier 마다 weight에 해당하는 계수가 있고, 각 classifier가 낸 error를 이 weight로 평균낸, 평균 error를 최소화하는 방향으로 학습을 함.그래서 특정 weak classifier가 틀리면 weight를 내리고, 맞으면 그대로 둠.이를 무한히 반복하면 점진적으로 acc가 같거나 좋아짐 2014. 12. 16.
평균과 분산 통계적 검정, T 검정, 카이스퀘어 검정 - T 분포 : 정규분포*자유도/카이스퀘어분포t분포는 데이터의 개수에 따라서 점점 뾰족하게 모양이 변하는 분포이다. 따라서 t분포를 이용한 검정 즉, t검정을 하면 그냥 정규분포로한 일반 검정보다 데이터의 샘플수가 적을때 보다 아웃라이어에 강한 특징이 있다.그대신 데이터가 30이상이 되면 가우시안과 분산이 거의 같아지므로 t분포를 쓰는 의미가 없다.보통 데이터의 개수가 적은 경우, 즉 데이터 1개짜리의 자유도가 작은 경우에 t분포를 사용한다. (t분포는 자유도가 작으면 양끝이 두툼해지는 모양이되어 아웃라이어에대해 robust해진다.)http://blog.naver.com/gracestock_1/120202114986 - 카이스퀘어 분포 : 표준정규분포를 제곱한 데이터의 분포통계에서 쓰는 자유도는 모두 같.. 2014. 12. 15.
Digital Signal Processing, Parallelization 과거에는 신호처리를 아날로그 방식(하드웨어에서 처리)으로 많이 했었으나, 하드웨어의 발달로 빠르고 자유로운 프로그래밍이 가능한 디지털 방식이 선호되고 있다.물론 디지털 방식은 아날로그 방식에 비해 속도가 느리므로, 아직도 성능이 중요한 부분은 아날로그 방식을 사용하고 있다. 즉 기술이 발달될 수록 기존 기술은 디지털화가 되고, 성능이 중요한 새로 개발된 기술은 아날로그가 담당하게 된다.Embeded System이란 단일 목적으로 개발된 (일종의 아날로그) 하드웨어이다. 아날로그 방식 : 상대적으로 저전력, 저비용에 고성능이다. 그러나 한번 완성된 제품은 수정이 불가능하고 개발 기간이 매우 길고, 단일 목적만 가능하다.디지털 방식 : 상대적으로 고전력, 고비용에 저성능이나 반대로 수정이 언제든지 가능하며 .. 2014. 11. 17.
Kernel Density Estimation, Gaussian Mixture Model 비 모수적 방법 (Non-parametric method) : Model의 구체적인 스펙을 정하지 않고, 데이터에 따라 저절로 정해지도록 하는 방법 Kernel Density Estimation : N개의 데이터가 주어졌을 때, 각각의 데이터를 평균으로하는 N 개의 가우시안 분포를 가정한다. 이때 가우시안의 분산은 임의로 정한다.(그래도 가장 중요한 평균은 데이터에 맡기므로 non-parametric에 해당함) 그리고 N개의 가우시안을 모두 더하여 다음과 같은 Model을 만든다. 가우시안 믹스쳐 모델 (Gaussian Mixture Model) : 가우시안 믹스쳐 모델도 가우시안을 기본으로 모델링을 한다는 점은 같지만, 가우시안의 개수를 직접 지정해주기 때문에 parametric 에 해당한다. 이 모델.. 2014. 10. 30.
Bayes Error 베이즈 에러 (Bayes Error) Classification 문제에서, P(Y | X)에 대한 확률 분포(underlying true distribution)를 알고 있다고 가정했을 때, 이론적으로 도달할 수 있는 최소의 classification error를 의미한다. https://en.wikipedia.org/wiki/Bayes_error_rate 단, 여기서 중요한 것은 아무리 underlying true distribution를 알고 있다하더라도, 이를 이용해 class label을 inference하는 방법이 반드시 P(y1, x)와 P(y2, x)를 비교해서 확률이 높은 쪽을 정답으로 골라야만 이 Bayes Error에 도달할 수 있다. 이 방식이 아닌 모든 inference 방법은 이론.. 2014. 10. 27.
Polynomial Regression, Non-Linear Features 변수들이 선형적인 관계만을 갖는 Linear Regression 의 경우 모델링이 극히 단순하고 학습이 쉽다.그러나 변수들이 비선형적인, 예를 들어 서로 곱샘이나 제곱 등의 관계를 갖는 경우 다소 어려운 모델링이 필요하다. Ex) 집의 가격 = f(면적, 도로와의 거리, 층 수) Ex) 배란다의 면적 = f(집의 가로, 세로 길이,층 수) Ex) 키 = f(유전적 요소(부모의 키), 환경적 요소(영양공급상태)) 이러한 비선형적 문제는 Neural Network 중 가장 간단한 Multi-Layer Perceptron 만 사용하여도 충분히 쉽게 풀린다. 왜냐하면 Neural Network 는 충분한 Hidden Node를 가질 때, 그 어떤 함수도 근사시킬 수 있는 Universial Function Ap.. 2014. 10. 3.
Information Theory, Distance Metric on PDF 1. Information Theory (=Shannon's Information Theory) 정보량에 대해 기술하기 위한 이론으로 엔트로피를 핵심 개념으로 사용하며, 기계학습을 비롯해 셀 수없이 방대한 분야에서 활용되고 있다. * Shannon's Bits : Information의 양(정보량)을 나타내기 위해 샤논은 bit를 사용하였다. 먼저 정보량을 다음과 같이 정의한다. 확률 p인 사건의 정보량 = 1/p 를 나타내는데 필요한 bit의 개수 = log_2(1/p) 즉 정보량의 정의는 log_2(1/p)인 것이다. 이에 따라 확률(o)가 낮은 사건일수록 그값을 표현하는 데 bit가 더 많이 필요하게 된다. 즉 낮은 확률의 사건일 수록 정보량이 더 큰 것이다. http://en.wikipedia.o.. 2014. 9. 29.
표본평균의 평균과 분산 / 모평균 추정에 대한 비판 표본평균의 평균 표본평균이 모평균과 같은게 아니라, 표본평균의 평균이 모평균과 같다. 가장 크게 착각하는 점이 모집단에서 임의로 N개의 샘플을 뽑은 단 1개의 표본집단의 평균은 절대 모평균과 같지 않다. 고등학교 확률에서 말하는 개념은, 이러한 N개 샘플을 뽑은 표본집단이 충분히 큰 수인 M개가 있을 때, 각각의 표본집단을 평균내서 만든 표본평균들의 평균이 모평균과 같아진다는 말이다. 이 경우 표본평균들의 분산이 모집단의 분산보다 작은 이유는 쉽게 납득 가능하다. 당연히 표본평균들은 이미 1차적으로 표본집단에 대해서 평균이 취해지는 과정에서 분산이 상당히 사라지기 때문이다. 즉, 이 표본평균이라는 확률변수는 아래와 같은 분포를 따른다. 즉, 이 "표본평균"이라는 녀석은 표본집단을 평균 냈을 때의 변수이고.. 2014. 8. 14.
Generative Model, Discriminant Model Generative Model : Bootstrapping이 가능한 모델이라고 생각하면 됨. 즉 학습한 input 데이터의 분포를 따르는 데이터를 생성해낼 수 있다. 즉 input과 속성이 동일한, 새로운 input2 데이터를 만들 수 있다. - PGM(MRF, BN 이 해당됨) Discriminant Model : 재생성이 불가능하고 오직 분류만 가능하다. -SVM, DNN------ 탐미첼 책에서 든 예시(Naive-Bayes 와 Logistic Regression의 분류에서의 비교. 둘다 거의 비슷한 방식인데 하나는 Generative, 하나는 Discriminant 임)Generative Model은 데이터가 작을 때 유리하고,(간단히 생각해보면 Resampling을 통해 데이터를 더 많이 취하는.. 2014. 8. 12.
확률 법칙, The Rules of Probability. sum rule과 product rule은 연속확률 변수에대해서도 똑같이 사용 가능하다.(시그마 대신 적분을 사용) 위의 두 공식으로부터 유도되는, 또 다른 아주 자주 쓰이는 공식 (sum rule에 product rule을 대입하면 유도됨.) Conditional Probability , P(A|B)에서 자주 헷갈리는 모든 경우를 더해서 1이되는 개념.앞에있는 확률 변수 A가 실제로 계산되어지는 확률변수이다. given B는 그냥 단순히 조건일 뿐, P(A|B)는 A에대한 확률이다.따라서 더해서 1이 되는 것은 given이 같을때, 앞의 확률변수의 모든 경우를 더했을 때 1이 되는 것이다. (모든 given을 더해서 1이 되는 것으로 종종 헷갈림) 2014. 8. 11.
테일러 급수, 푸리에 급수 - 다항함수 : y=1+x^2과 같은 다항식만으로 표현 가능한 함수- 초월함수 : 로그함수, 지수함수, 사인함수와 같이 다항식으로는 표현할 수 없는 함수 - 테일러 급수의 의미 : 초월함수를 다항함수로 근사한다. - 테일러 급수의 직관적 이해여기서는 엄밀한 증명이나 정의보다는 테일러 급수를 거꾸로 분석해 최대한 직관적으로 이해해보고자 한다. 우선 테일러 급수는 작은 구간에 한하여, 초월함수를 다항함수로써 근사시키는 것이다. (다항식으로 근사하는 이유는 수식의 계산이 엄청나게 쉽고 편해지기 때문이다) 이때 테일러 급수에 왜 미분계수가 사용 될까?x=a 지점에서의 초월함수가 근방의 좁은 구간에서 어떤 임의의 다항함수 g(x)와 같다고 가정해보자.그럼 이때 다항함수는 g(x) = C1 + C2*x + C3*x.. 2014. 8. 10.
Jacobian Matrix, Fisher Matrix, Hessian Matrix, Jacobian Matrixoutput이 1차원 실수인 함수를 n차원 벡터로 미분하면 자코비안(1*n)행렬이 된다.output이 1차원 실수인 함수를 n차원 벡터로 2번 미분하면 헤시안(n*n)행렬이 나온다. (이는 자코비안을 한 다시 n짜리 벡터로 미분한 것과 같다.) (행렬을 벡터가 아닌 스칼라로 미분할 때는 그냥 하나의 변수에 대해 미분하면 된다.) 여기서 맨 오른쪽의 matrix는 함수 f의 output이 1차원 실수일 때는 무시해도 된다.(맨 윗줄만 존재하는 것임.) Jacobian Matrix : 어떤 행렬을 벡터 각각의 변수들로 차례차례 바꿔가면서 한 번 씩 미분한 행렬이다.어떤 행렬의 성분에 대해 첫 번째 줄은 첫 번 째 성분에 대해 모든 변수들로 차례차례 한 번 씩 번갈아가면서 미분. 두.. 2014. 8. 6.
Weight Decay, Regularization, Overfitting, Validation set, Drop out, ReLU Overftting : 뉴럴 네트워크를 학습하다보면, 오버피팅이 쉽게 일어난다.오버피팅은 training set을 너무 많이 학습해서, training set에대한 error는 매우 줄어들지만, 문제에대한 일반성이 떨어져서 test set 또는 validation set(오버피팅 여부를 확인하기위해 error를 측정하기위한 데이터 셋으로, test set도 아니고 training set도 아닌 데이터)에대한 error가 증가하는 것을 의미한다. Regularization : 이러한 현상은 weight가 처음에는 매우 작게 세팅되어 있다가, 점점 커지는 것과 비례해서 오버피팅이 일어나는 것으로 해석된다.따라서 이것을 막기위해 weight decay(=regularization) 을 사용한다.이것은 Erro.. 2014. 8. 4.
Deep Belief Network DBN : 보통 MLP에서 Hidden Layer의 개수가 1개보다 큰 경우 Deep이란 말을 쓰는 것 같다. MLP에서 Deep한 뉴럴넷을 학습시키기위해 BackPropagation 이 개발되었으나, Hidden Layer의 개수가 많아질 수록 아래쪽 Layer까지 제대로 error를 전파시키지 못하는 문제가 생겼다.그래서 이를 해결하기위해 2006, Hinton 이 만든 DBN은 RBM을 이용해서 MLP의 Weight를 input 데이터들만을 보고(unsuperivesd로) Pretraining 시켜서 학습이 잘 일어날 수 있는 초기 세팅을 하는 방법을 고안하였다. (기존에는 초기조건으로 그냥 0~0.1 사이의 weight를 랜덤으로 주었음.)RBM은 두 레이어가 서로를 좀 더 잘 표현할 수 있는 방.. 2014. 8. 1.
RBM, Contrastive Divergence http://deepcumen.com/2015/04/restricted-boltzmann-machine/#comment-437http://147.46.219.139:8889/tree/DeepLearningTutorials/code RBM 학습 알고리즘 다시 정리 :cost = T.mean(self.free_energy(self.input)) - T.mean(self.free_energy(chain_end))이 cost function을 최소화하는 gradient descent를 수행한다. 이 cost function은 (input데이터에 대한 free energy)-(input데이터로 k번 왔다갔다하면서 gibbs 샘플링한 V노드의 데이터의 free energy)이다. 이 둘이 최대한 같아지도록 grad.. 2014. 7. 23.
MCMC, Metropolis-Hastings, Gibbs Sampling Markov Assumption(=Markov Property) : 직전 사건에의해서만 현재 사건이 영향을 받는 속성Chain : discrete한 Time Sequence 사건Markov Chain : Markov Assumption 을 만족하는 ChainMonte Carlo Method : 다음과 같이 여러개의 표본을 추출해서 전체적인 분포를 파악하는 방법론 Sampling : 해당 모델을 만족하는 데이터를 생성, 추출해내는 것. 단 그 모델의 확률 분포에 비례하여 확률 밀도가 높은 곳에서 그에비례하게 더 많은 데이터가 나오도록 추출해야 한다. Markov Chain Monte Carlo : Markov Chain에서 샘플링을 하기위해 Monte Carlo Method를 써서 확률 분포가 반영된 데이.. 2014. 7. 22.