Weight Decay, Regularization, Overfitting, Validation set, Drop out, ReLU
Overftting : 뉴럴 네트워크를 학습하다보면, 오버피팅이 쉽게 일어난다.오버피팅은 training set을 너무 많이 학습해서, training set에대한 error는 매우 줄어들지만, 문제에대한 일반성이 떨어져서 test set 또는 validation set(오버피팅 여부를 확인하기위해 error를 측정하기위한 데이터 셋으로, test set도 아니고 training set도 아닌 데이터)에대한 error가 증가하는 것을 의미한다. Regularization : 이러한 현상은 weight가 처음에는 매우 작게 세팅되어 있다가, 점점 커지는 것과 비례해서 오버피팅이 일어나는 것으로 해석된다.따라서 이것을 막기위해 weight decay(=regularization) 을 사용한다.이것은 Erro..
2014. 8. 4.