Precision Recall AveragePrecision
# 컨퓨전 매트릭스 - True/False: 모델이 잘했느냐 못했느냐를 의미함. 즉 True이면 모델이 정답을 맞췄다는 의미이고, False이면 모델이 정답을 틀렸다는 의미이다. - Positive/Negative: 모델이 예측한 값이 True였나, False였나를 의미함.http://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/ - TP: 모델이 1이라고 예측(P)했고, 그 예측이 맞았음(True, 정답을 맞춤) 즉, 이 경우에 실제 정답도 1임 - TN: 모델이 0이라고 예측(N)했고, 그 예측이 맞았음(True, 정답을 맞춤) 즉, 이 경우엔 실제 정답이 0임 - FP: 모델이 1이라고 예측(P)했고, 그 예측이 틀렸음(False,..
2017. 5. 31.