본문 바로가기
Research/Machine Learning

Belief Propagation

by IMCOMKING 2018. 1. 5.

# Belief Propagation

Acyclic PGM 모델을 학습하여 MLE나 MAP를 수행하기 위한 알고리즘이다. Cyclic PGM의 경우 수렴성이 보장되지 않고, 계속 확률분포가 진동하지만, Acyclic한 경우 수렴성이 이론적으로 증명되었다고 한다.

어떤 임의의 parametric PGM모델을 Acyclic하게 만들고, 이것의 파라미터를 MLE나 MAP에 대해 최적화 하기 위해 각 그래프에서의 Node가 자기와 연결된 주변 Node로 Belief Propagation을 시키고, 이것들이 모여서 1번의 학습이 이뤄진다. 이러한 Belief Propagation을 계속해서 iteration하면서 학습을 수행하게 된다.


기본개념: https://en.wikipedia.org/wiki/Belief_propagation

댓글