본문 바로가기
Research/Machine Learning

강화학습, Exponentially weighted average계산하기

by 곽동현 IMCOMKING 2019. 1. 22.

https://gist.github.com/imcomking/b1acbb891ac4baa69f32d9eb4c221fb9

def exponentially_weighted_matrix(discount, mat_len):
    DisMat = np.triu(np.ones((mat_len, mat_len)) * discount, k=1)
    DisMat[DisMat==0] = 1
    DisMat = np.cumprod(DisMat, axis=1)
    DisMat = np.triu(DisMat)
    return DisMat

def exponentially_weighted_cumsum(discount, np_data):
    DisMat = exponentially_weighted_matrix(discount, np_data.shape[0])
    value = np.dot(DisMat, np_data.reshape(-1, 1))
    return value[::-1].transpose()[0]

 

 

 

# 강화학습 팁

Continuous action space의 문제를 풀때는 배치사이즈가 32, 64의 수준이아니라 512, 1024 수준으로 매우 커야한다.

 

 

 

# Log-Derivative Trick

https://dnddnjs.gitbooks.io/rl/content/monte-carlo_policy_gradient__reinforce.html

https://talkingaboutme.tistory.com/entry/RL-Spinning-Up-Intro-to-Policy-Optimization

 

 

 

'Research > Machine Learning' 카테고리의 다른 글

소리 합성  (0) 2019.12.09
물리학에 기반한 모델  (0) 2019.05.15
강화학습, Exponentially weighted average계산하기  (0) 2019.01.22
PID 제어  (0) 2018.11.13
Belief Propagation  (0) 2018.01.05
Thompson Sampling, Multi-armed bandit, Contextual bandit  (0) 2018.01.05

댓글0